^2 log 2x + ^2 log x - ^2 log 8 = 3
Matematika
deamonica3
Pertanyaan
^2 log 2x + ^2 log x - ^2 log 8 = 3
1 Jawaban
-
1. Jawaban sneuga39
Halo deamonica3,
[tex] log_{2}(2x) = log_{2}(2)+log_{2}(x) \\ maka \\ log_{2}(2x) + log_{2}(x)- log_{2}(8) = 3 \\ akan \: menjadi \\ log_{2}(2) + log_{2}(x) + log_{2}(x) - log_{2}(8) = 3 \\ 1 + log_{2}( {x}^{2} ) - 3 = 3 \\ log_{2}( {x}^{2} ) = 3 - 1 + 3 \\ 2 \times log_{2}(x) = 5 \\ log_{2}(x) = \frac{5}{2} \\ x = \sqrt{ {2}^{5} } = \sqrt{32} = 4 \sqrt{2} [/tex]
[tex] log_{2}(x) [/tex] itu sama kaya ^2logx
Mudah mudahan membantu :D
Maaf kalau salah :D