Matematika

Pertanyaan

tentukan nilai m pada bersamaan bentuk aljabar (2x+3y)(kx+ly)=mx2 +23xy+12y2

1 Jawaban

  • dikaliin biasa dulu
    [tex](2x+3y)(kx+ly)=(m {x}^{2} +23xy+12 {y}^{2} ) \\ (2x.kx+2x.ly+3y.kx + 3y.ly) =(m {x}^{2} +23xy+12 {y}^{2}) \\ (2k {x}^{2} + 2lxy+3kxy+3l {y}^{2} = (m {x}^{2} +23xy+12 {y}^{2}) \\ (2k {x}^{2} +(2l+3k)xy+3l {y}^{2} = (m {x}^{2} +23xy+12 {y}^{2})
    [/tex]


    nah ada pola kesamaan, berarti kan
    [tex]2k {x}^{2} = m {x}^{2} \\
    2k = m[/tex]

    .
    .
    .
    [tex](2l+3k).xy =23.xy \\
    2l+2k = 23[/tex]

    .
    .
    .
    [tex]3ly^2 = 12y^2 \\ 3l = 12 \\ l= 4[/tex]


    substitusi
    [tex]2(4) +3k= 23 \\
    3k= 23-8\\
    3k = 15 \\
    k = 5

    \\ \\ m = 2(5) \\
    m = 10[/tex]


    semoga membantu:)

Pertanyaan Lainnya